

REVIEW BY FORT BEND COUNTY COMMISSIONERS COURT

Right of Way Permit

Fort Bend County
Engineering Department
301 Jackson Suite 401

301 Jackson Suite 401 Richmond, Texas 77469 281.633.7500 Permits@fortbendcountytx.gov

		X Comme Permit No: 2	e <mark>rcial Drivew</mark> 2018-21520	ay Permit		
Appl	nount.	ston LS Construction dba Ho	uston Lone \$	Star Construct	ion LLC/Edward I. Tsao	
Job	Location Site	25031 Westheimer Parkwa	ıy, Katy, TX 7	77494		
Bone	d No.	Date of Bond:	6/1/2018	Amount: _	\$26,000.00	
Layin Road Comi Texas	ng, Construction Is, Streets, Hig missioners Co s, of the Minu	nt came to make use of certain on, Maintenance, and Repair of thways, and Drainage Ditches in urt of Fort Bend County, Texas, tes of the Commissioners Court Chapter 181, Vernon's Texas Sta	Buried Cables Fort Bend Co as passed by of Fort Bend	s, Conduits, and ounty, Texas, U y the Commissi County, Texas	d Pole Lines, In, Under, Across on Inder the Jurisdiction of the Inders Court of Fort Bend Count	or Along
Note 1. 2.	Evidence of grounds for Written not a. b.	review by the Commissioners C job shutdown. ices are required: 48 hours in advance of constr When construction is complet Administrator thru MyGovern xpires one (1) year from date o	uction start u ted and ready mentOnline.	p, and for final inspe org portal.	ction, submit notification to Per	
Comi notic	missioner e of said abov	f July, 2018, Upon Motion of Co MoRoles duly e purpose is hereby acknowled placed on record according to t	put and carri ged by the Co	ommissioners C	ED, ADJUDGED AND DECREED to court of Fort Bend County, Texas	hat said
Signa	ature //		Pres	ented to Comn	nissioners Court and approved.	
Ву:	County Engir	- Life	Date	Recorded 7-1	3-201 Comm. Court No. 10	<u>B</u>
Ву:	N/A		Cleri	of Commissio	ners Court	
	Drainage Dis	trict Engineer/Manager		' Deputy		

PERMIT APPLICATION REVIEW FORM FOR CABLE, CONDUIT, AND POLE LINE ACTIVITY IN FORT BEND COUNTY

Fort Bend County Engineering Department

301 Jackson Suite 401 Richmond, Texas 77469 281.633.7500 Permits@fortbendcountytx.gov

X	Right of Way Permit
Х	Commercial Driveway Permit
Dorr	mit No: 2019 21520

Permit No: 2018-21520 The following "Notice of Proposed Cable, Conduit, and/or Pole Line activity in Fort Bend County" and accompanying attachments have been reviewed and the notice conforms to appropriate regulations set by Commissioner's Court of Fort Bend County, Texas. (1) COMPLETE APPLICATION FORM: a. Name of road, street, and/or drainage ditch affected. b. Vicinity map showing course of directions Х c. Plans and specifications (2) BOND: County Attorney, approval when applicable. Perpetual bond currently Bond No: Amount: posted. Performance bond submitted. Amount: \$26,000.00 **Bond No:** Cashier's Check Amount: Check No: (3) DRAINAGE DISTRICT APPROVAL (WHEN APPLICABLE): **Drainage District Approval** Date We have reviewed this project and agree it meets minimum requirements. 6/29/2018 **Permit Administrator** Date

PERFORMANCE BOND COVERING ALL CABLE, CONDUIT AND/OR POLE LINE ACTIVITY IN, UNDER, ACROSS OR ALONG FORT BEND COUNTY ROAD, COMMERCIAL DRIVEWAY AND MEDIAN OPENINGS OR MODIFICATIONS (AUTHORIZED)

BOND NO:

THE STATE OF TEXAS

§

KNOW ALL MEN BY THESE PRESENTS:

COUNTY OF FORT BEND

8

THAT WE, Houston LS Construction dba Houston Lone Star Construction LLC, whose (address, phone) is 12816-D Willow Ctr., Houston, Texas 77066 (713-829-6064), hereinafter called the Principal, and YY Brothers Investment Inc., a Corporation existing under and by virtue of the laws of the state of Texas and authorized to do an indemnifying business in the state of Texas, and whose principal office is located at (name/address/phone) 24915 Hazel Ranch Dr., Katy, TX 77494 (713-839-5577), whose officer residing in the State of Texas, authorized to accept service in all suits and actions brought whining said state is Developers Surety and Indemnity Company and whose address is 2203 Timberloch Pl., #220, The Woodlands, TX 77380, hereinafter called the Surety, and held and firmly bound unto, Robert E. Hebert, County Judge of Fort Bend County, Texas, or his successors in office, in the full sum of Twenty-six Thousand Dollars (\$ 26,000.00) current, lawful money of the United States of America, to be paid to said Robert E. Hebert, County Judge of Fort Bend County, Texas, or his successors in office, to which payment well and truly to be made and done, we, the undersigned, bind ourselves and each of us, our heirs, executors, administrators, successors, assigns, and legal representatives, jointly and severally, by these presents.

THE CONDITION OF THIS BOND IS SUCH THAT, WHEREAS, the above bounden principal contemplates laying, constructing, maintaining and/or repairing one or more cables, conduits, and/or pole lines in, under, across and/or along roads, streets and highways, commercial driveway and median openings or modifications in the County of Fort Bend, and the State of Texas, under the jurisdiction of the Commissioners' Court of Fort Bend County, Texas, pursuant to the Commissioners' Court order adopted on the 1st day of December, A.D. 1980, recorded in Volume 13, of the Commissioners' Court Minutes of Fort Bend County, Texas, regulating same, which Commissioners' Court order is hereby referred to and made a part hereof for all purposes as though fully set out herein;

AND WHEREAS, the principal desires to provide Fort Bend County with a performance bond covering all such cable, conduit and/or pole line activity, commercial driveway and median openings or modifications;

NOW, THEREFORE, if the above bounden principal shall faithfully perform all its cable, conduit and/or pole line activity (including, but not limited to the laying, construction, maintenance and/or repair of cables, conduits and/or pole lines) in, under, across and/or along roads, streets and highways, commercial driveway and median openings or modifications in the County of Fort Bend and State of Texas, under the jurisdiction of the Commissioners Court of Fort Bend County, Texas, pursuant to and in accordance with minimum requirements and conditions of the above mentioned Commissioners' Court order set forth and specified to be by said principal done and performed, at the time and in the manner therein specified, and shall pay over and make good and reimburse Fort Bend County, all loss and damages which Fort Bend County may sustain by reason of any failure or default on the part of said principal, then this obligation shall be null and void, otherwise to remain in full force and effect.

This bond is payable at the County Courthouse in the County of Fort Bend and State of Texas.

It is understood that at any time Fort Bend County deems itself insecure under this bond, it may require further and/or additional bonds of the principal.

EXECUTED this 1^{st} day of June, 2018.

Houston LS Construction dba

Houston Lone Star Construction, LLC

PRINCIPAL

BY

CCM 7-10-2018 # 10B
Fort Bend County Clerk
Return Admin Serv Coord
Return +#2018-21520 RAC

Rao Umar Faroog

Developers Surety and Indemnity Company

SURETY

RY

Rebecca Skillern, Attorney-in-Fact

POWER OF ATTORNEY FOR DEVELOPERS SURETY AND INDEMNITY COMPANY INDEMNITY COMPANY OF CALIFORNIA

PO Box 19725, IRVINE, CA 92623 (949) 263-3300

KNOW ALL BY THESE PRESENTS that except as expressly limited, DEVELOPERS SURETY AND INDEMNITY COMPANY and INDEMNITY COMPANY OF CALIFORNIA, do each hereby make, constitute and appoint:

Marcy Yardas, Joe Yardas, jointly or severally

as their true and lawful Attorney(s)-in-Fact, to make, execute, deliver and acknowledge, for and on behalf of said corporations, as sureties, bonds, undertakings and contracts of suretyship giving and granting unto said Attorney(s)-in-Fact full power and authority to do and to perform every act necessary, requisite or proper to be done in connection therewith as each of said corporations could do, but reserving to each of said corporations full power of substitution and revocation, and all of the acts of said Attorney(s)-in-Fact, pursuant to these presents, are hereby ratified and confirmed.

This Power of Attorney is granted and is signed by facsimile under and by authority of the following resolutions adopted by the respective Boards of Directors of DEVELOPERS SURETY AND INDEMNITY COMPANY and INDEMNITY COMPANY OF CALIFORNIA, effective as of January 1st, 2008.

RESOLVED, that a combination of any two of the Chairman of the Board, the President, Executive Vice-President, Senior Vice-President or any Vice President of the corporations be, and that each of them hereby is, authorized to execute this Power of Attorney, qualifying the attorney(s) named in the Power of Attorney to execute, on behalf of the corporations, bonds, undertakings and contracts of suretyship; and that the Secretary or any Assistant Secretary of either of the corporations be, and each of them hereby is, authorized to attest the execution of any such Power of Attorney;

RESOLVED, FURTHER, that the signatures of such officers may be affixed to any such Power of Attorney or to any certificate relating thereto by facsimile, and any such Power of Attorney or certificate bearing such facsimile signatures shall be valid and binding upon the corporations when so affixed and in the future with respect to any bond, undertaking or contract of suretyship to which it is attached.

IN WITNESS WHEREOF, DEVELOPERS SURETY AND INDEMNITY COMPANY and INDEMNITY COMPANY OF CALIFORNIA have severally caused these presents to be signed by their respective officers and attested by their respective Secretary or Assistant Secretary this 6th day of February, 2017.

By: Daniel Young, Senior Vice-President

Auth

By: Daniel Young, Senior Vice-President

Mark Lansdon, Vice-President

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

State of California County of Orange

On February 6, 2017 before me, Lucille Raymond, Notary Public

Date Lucille Raymond, Notary Public

Here Insert Name and Title of the Officer

personally appeared

Daniel Young and Mark Lansdon Name(s) of Signer(s)

who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Signature _

Lucille Raymond, Notary Public

Place Notary Seal Above

CERTIFICATE

The undersigned, as Secretary or Assistant Secretary of DEVELOPERS SURETY AND INDEMNITY COMPANY or INDEMNITY COMPANY OF CALIFORNIA, does hereby certify that the foregoing Power of Attorney remains in full force and has not been revoked and, furthermore, that the provisions of the resolutions of the respective Boards of Directors of said corporations set forth in the Power of Attorney are in force as of the date of this Certificate.

This Certificate is executed in the City of Irvine, California, this

LUCILLE RAYMOND

Commission # 2081945 Notary Public - California

Orange County

My Comm. Expires Oct 13, 201

1st day of

June

, 2018 .

FILED AND RECORDED OFFICIAL PUBLIC RECORDS

**

Laura Richard, County Clerk Fort Bend County Texas July 12, 2018 03:07:09 PM

FEE: \$0.00

PG2

2018078082

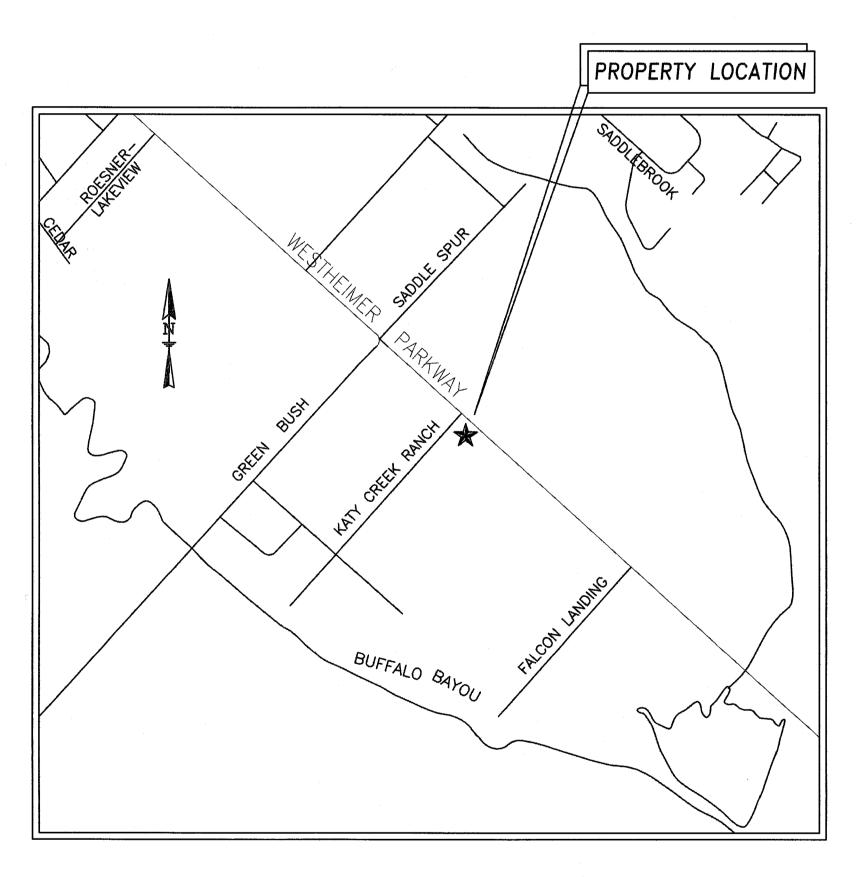
SITE DEVELOPMENT PLANS

FOR

KATY CREEK RANCH PLAZA A SUBDIVISION OF 3.0543 ACRES OF LAND SITUATED IN THE STEPHEN HOBERMAKER FORT BEND COUNTY, TEXAS

Fort Bend County Construction - General Notes

1. Fort Bend County must be invited to the Pre-Construction Meeting.


2. Contractor shall notify Fort Bend County Engineering Department 48 hours prior to commencing construction and 48 hour notice to any construction activity within the limits of the paving at Construction@fortbendcountytx.gov.

Contractor is responsible for obtaining all permits required from Fort Bend County prior to commencing construction of any improvements within County road right of ways.

- All Paving Improvements shall be constructed in accordance with Fort Bend County "Rules, Regulations and Requirements" relating to the Approval and Acceptance of Improvements in Subdivisions as currently amended.
- All road widths, curb radii and curb alignment shown indicates back of curb
- 6. A continuous longitudinal reinforcing bar shall be used in the curbs.
- 7. All concrete pavement shall be 5 ½ sack cement with a minimum compressive strength of 3500 psi at 28 days. Transverse expansion joints shall be installed at each curb return and at a maximum spacing of 60 feet.
- 8. All weather access to all existing streets and driveways shall be maintained at all times.
- 9. 4"x 12" reinforced concrete curb shall be placed in front of single family lots only. All other areas shall be 6" reinforced concrete curb.
- 10. At all intersection locations, Type 7 ramps shall be place in accordance with TXDOT Ped-12a standard detail sheet. A.D.A. - Handicap Ramps shall be installed with street paving at all intersections and comply with current A.D.A. regulations.
- 11. Curb headers are required at curb connections to Handicap Ramps, with no construction joint within 5' of ramps.
- 12. All intersections utilizing Traffic Control measures shall have A.D.A. wheel chair ramps installed.
- 13. Guidelines are set forth in the Texas "Manual on Uniform Traffic Control Devices", as currently amended, shall be observed. The Contractor shall be responsible for providing adequate flagmen, signing, striping and warning devices, etc., during construction - both day and night.
- 14. All R1-1 stop signs shall be 30"x30" with diamond grade sheeting per Texas manual on uniform traffic control devices.
- 15. Street name signage shall be on a 9" high sign flat blade w/reflective green background. Street names shall be upper and lowercase lettering with uppercase letters of 6" minimum and lowercase letters of 4.5" minimum. The letters shall be reflective white. Street name signs shall be mounted on stop sign post.
- 16. A Blue Double Reflectorized button shall be placed at all Fire Hydrant locations. The Button shall be placed 12 inches off of the centerline of the street on the same side as the hydrant.
- 17. The project and all parts thereof shall be subject to inspection from time to time by inspectors designated by Fort Bend County. No such inspections shall relieve the Contractor of any of its obligations hereunder. Neither failure to inspect nor failure to discover or reject any of the work as not in accordance with the drawings and specifications, requirements and specifications of Fort Bend County or any provision of this project shall be construed to imply an acceptance of such work or to relieve the Contractor of any of its obligations hereunder.

NOTE: Fort Bend County notes supersede any conflicting notes.

ADDRESS: 25031 & 25033 WESTHEIMER PARKWAY KATY, TEXAS 77494

VICINITY MAP KEY MAP 485-N

	DISTRICT NAMES
SCHOOL	KATY I.S.D.
MUD	HARRIS-FORT BEND MUD 5
D01	FORT BEND DRAINAGE DISTRICT HOUSTON ETJ
G01	FORT BEND COUNTY GEN. HOUSTON ETJ
R41	FORT BEND COUNTY ESD2 HOUSTON ETJ

INDEX OF SHEETS:

COVER SHEET

SITE UTILITY LAYOUT

SITE DRAINAGE LAYOUT

EXTREME EVENT FLOW ANALYSIS

C-3DRAINAGE AREA MAP & DETAILS

S.W.P.P.P. LAYOUT & DETAILS

SITE JOINT LAYOUT

DRAINAGE AREA AND SWPPP AREA SITE PLAN

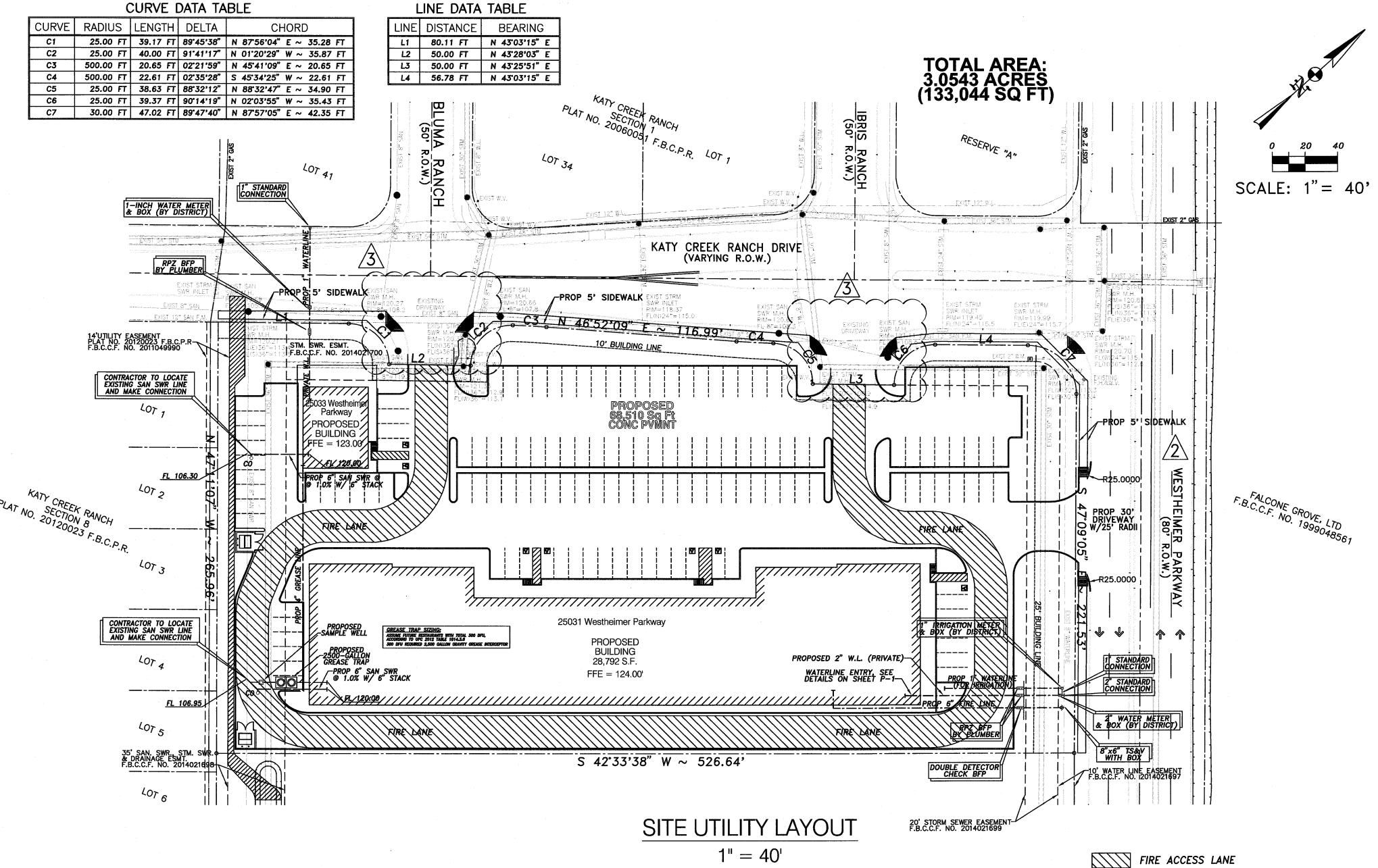
TRAFFIC CONTROL PLAN C-7

PREPARED BY:

SUBMITTED BY:

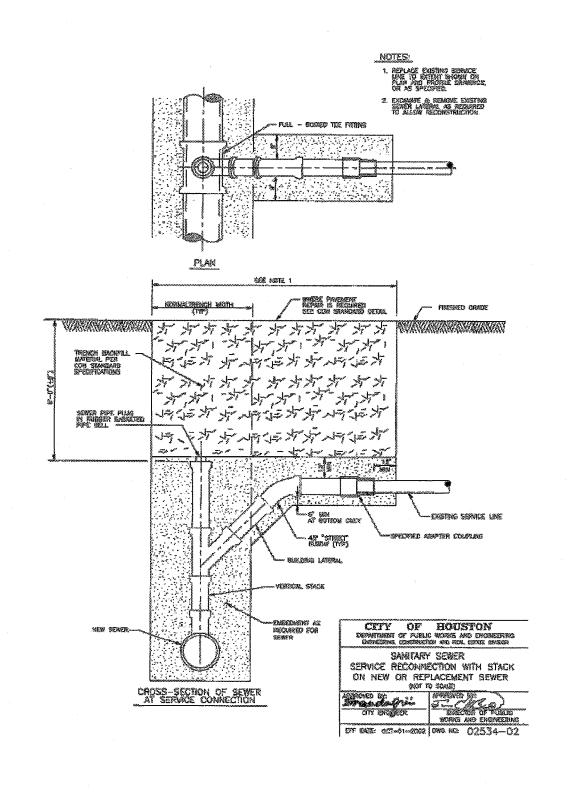
Phone: (713) 466-9776

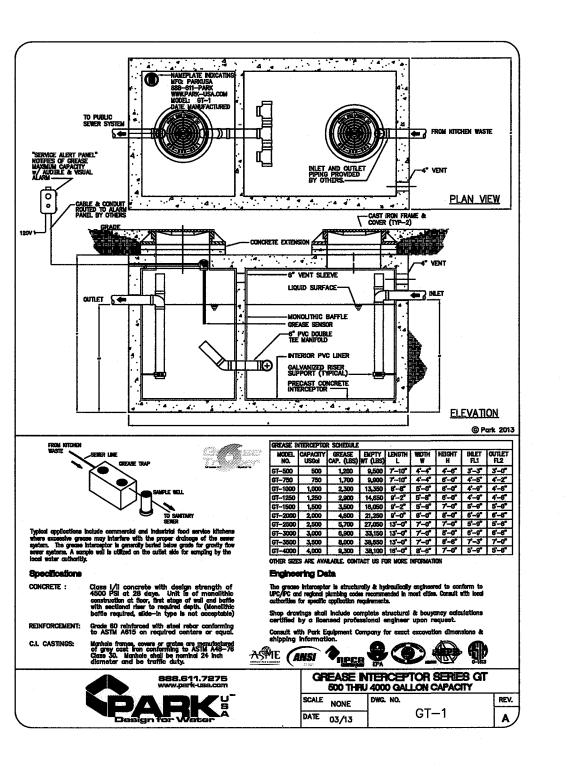
Houston, Texas Texas 77040-1509 Fax: (823) 328-7121 E-mail: hrsassociates@aol.com

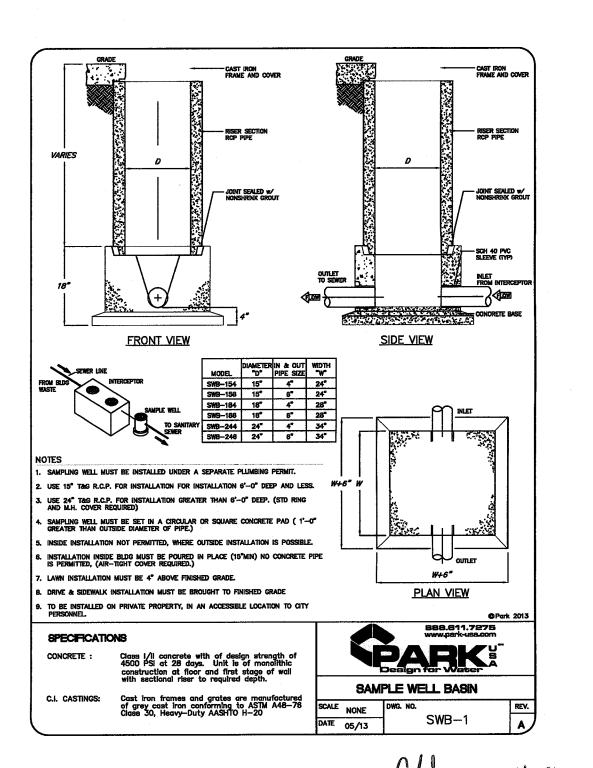

FIRM NAME: HRS and Associates, LLC FIRM REGISTRATION NUMBER: F-4093

NOTES:

- 1. FINISHED FLOOR ELEVATION SHALL BE A MINIMUM OF 12" ABOVE THE TOP OF THE NEAREST SANITARY SEWER MANHOLE COVER.
- 2. ELEVATION OF THE NEAREST SANITARY SEWER MANHOLE COVER IS AN ACTUAL ELEVATION OF 121.11 FT.
- 3. PLUMBER TO CONNECT INTO EXISTING SANITARY SEWER LINE.
- 4. ELECTRICIAN TO RUN THREE CONDUITS TO GARAGE FOR:
 - A) ELECTRIC SERVICE
 - B) TELEPHONE SERVICE
 - C) CABLE SERVICE... AT SAME LOCATION.
- 5. ALL COLD WATER LINES OUTSIDE BUILDINGS TO BE: P.V.C. SCH. 40 (ASTM D-1785)
- 6. ALL COLD WATER LINES INSIDE BUILDINGS TO BE: COPPER PIPE, TYPE "L"
- 7. ALL HOT WATER LINES TO BE: COPPER PIPE, TYPE "L"
- 8. ALL VENT LINES TO BE: P.V.C. SCH. 40
- 9. ALL SANITARY SEWER LINES TO BE: P.V.C. SCH. 40 (ASTM D-1785)


MUD NOTES:


THE CONTRACTOR SHALL CONTACT MDS BUILDER SERVICES DEPARTMENT AT 281-290-6503 OPTION 2 OR VIA EMAIL AT


bldrservices@municipaldistrictservices.com 48 HOURS PRIOR TO CONSTRUCTION AND TO REQUEST REQUIRED INSPECTIONS. ALL SITE SANITARY SEWER SHALL BE INSPECTED BY MDS PRIOR TO BACKFILL.

NO PIPES, PIPE FITTINGS, PLUMBING FITTINGS, AND FIXTURES WHICH CONTAIN MORE THAN A WEIGHTED AVERAGE OF 0.25% LEAD WHEN USED WITH RESPECT TO WETTED SURFACES EXIST IN PRIVATE WATER DISTRIBUTION FACILITIES INSTALLED ON OR AFTER JANUARY 4, 2014.

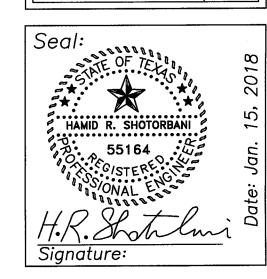
THE OWNER OR HIS CONTRACTOR SHALL INSTALL APPROPRIATE BACKFLOW PREVENTION DEVICES IN ACCORDANCE WITH STATE PLUMBING CODES OR AS REQUIRED BY THE DISTRICT'S OPERATOR. BACKFLOW TEST REPORTS MUST BE AVAILABLE AT THE TIME OF INSPECTION. COPIES OF ANNUAL TEST REPORTS MUST BE FORWARDED TO THE DISTRICT.

"KATY CREEK RANCH PLAZA"
25031 & 25033 Westheimer Parkway
Katy, Texas 77494
PROPOSED RETAIL BUILDING

Civil, Traffic Engineering, and Consulting

Phone: (713) 466-9776

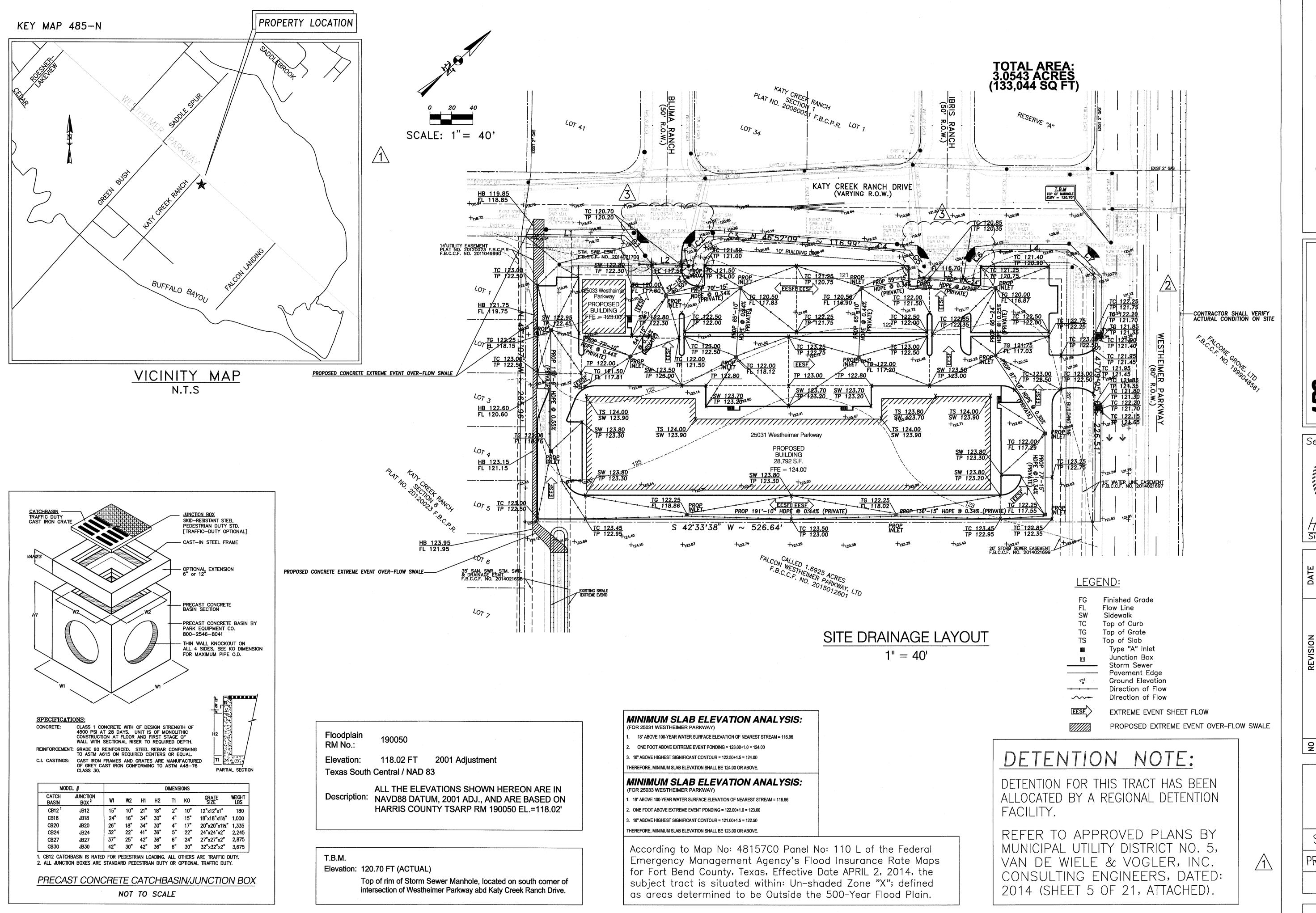
Phone: (713) 466-9776


Phone: (713) 466-9776

Phone: (713) 466-9776

Houston, Texas 77040-1509

E-mail: hrsassociates@aol.com


FIRM NAME: HRS and Associates, LLC

9	REVISION	DATE
\triangleleft	FORT BEND COUNTY REVISION	12-12-17
	REVISIONS OF MUD COMMENTS	01-12-18
$\langle \overline{\zeta} \rangle$	FORT BEND COUNTY ENGINEERING 02-12-18	02-12-18
	DEAPRTMENT COMMENTS	
⊗	FORT BEND COUNTY ENGINEERING	02-14-18
	SIDEWALK COMMENTS	
(

SITE UTILITY LAYOUT SCALE: 1"= 40' PROJ. # 2015-07-06 SHEET 1 OF 6

C-1

CAS 2/14/18

"KATY CREEK RANCH PLAZA"
25031 & 25033 Westheimer Parkway
Katy, Texas 77494
PROPOSED RETAIL BUILDING

Civil, Traffic Engineering, and Consulting

Phone: (713) 466-9776

Fax: (823) 328-7121

E-mail: hrsassociates@aol.com

FIRM NAME: HRS and Associates, LLC

					r		
DATE	12-12-17	01-12-18	02-12-18		02-14-18		
REVISION	FORT BEND COUNTY REVISION	REVISIONS OF MUD COMMENTS	FORT BEND COUNTY ENGINEERING	DEAPRTMENT COMMENTS	FORT BEND COUNTY ENGINEERING	SIDEWALK COMMENTS	
9	1		2		3		0

SITE DRAINAGE LAYOUT

SCALE: 1"= 40' PROJ. # 2015-07-06

SHEET 2 OF 6

C-2

TC 120.70
TP 120.20

BBOX1

BB2

L1

BB6

L1

L1

B4

A1

B1

L9

B2

L10

B3

LEGEND

EXTREME EVENT FLOW DIRECTION

DRAINAGE AREA MAP

ON-SITE EXTREME EVENT SHEET FLOW ANALYSIS

HIGH POINT OF THE DRIVEWAY = 120.20' (RE: SHT. C-2)

EXTREME EVENT (100-YEAR) SHEET FLOW CALCULATIONS:

TOTAL DEVELOPMENT = 2.513 AC.

ASSUMPTION: The sheet flow will occur when the storm sewer pipes are flowing full at design capacity, therefore the pipe flow must be deducted from the total site 100—year flow.

100-YEAR SHEET FLOW = (SITE 100-YEAR FLOW) - (SITE 2-YEAR FLOW)

FOR DESIGN FLOW, REFER TO STM. SWR. CALCULATION TABLE SHT. C-2 ACCUMULATED DESIGN FLOW TO JBOX 1 = 5.65 CFS ACCUMULATED DESIGN FLOW TO JBOX 2 = 6.50 CFS TOTAL FLOW CONVEYED BY STME. SWR. SYSTEM = 5.65 + 6.50 = 12.15 CFS

100-yr Peak Flow Calculations for 2.513 acre project: (Criteria: Fort Bend County Drainage District)

Time of concentration (Tc) calculations: Tc1: Sheet flow time on concrete (min.) Average slope = 0.50%

V = Average velocity = 2.0 ft./sec.

Df = Average Flow distance (ft.)

Tc1 = Df/(V x 60) = 100 / (2.0 X 60)

Tc1 = 0.83 min.

Tc2: Pipe flow time (min.)

V = Average pipe flow velocity = 3 ft./sec.

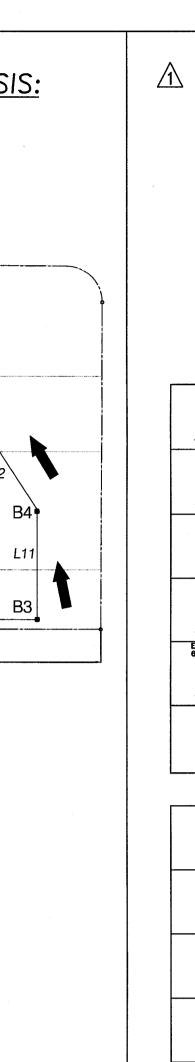
Df = Max. pipe run length = 600 ft.

Tc2 = 600/(3 x 60) = 3.3 min.

Total Tc = Tc1 + Tc2 = 0.83 + 3.3 = 4.1 min. use 5 min. From Duration Rainfall Intensity/Duration Curve I (100-yr) = 10.8 in/hr

 $Q(100-yr) = C \times I \times A \times Cf$ $Q(100-yr) = 0.80 \times 10.8 \times 2.513 \times 1.25 = 27.14 \text{ CFS}$

100-YEAR SHEET FLOW = (SITE 100-YEAR FLOW) - (SITE 2-YEAR FLOW) 100-YEAR SHEET FLOW = 27.14 - 12.15 = 14.99 CFS


THE SHEET FLOW IS EXPECTED TO EXIT FROM THE PROPOSED DRIVEWAY IN EXTREME EVENT. THE STANDARD BROAD—CRESTED WEIR FORMULA CAN BE USED TO DETERMINE THE HEAD (H) OVER THE DRIVEWAY, TO CONVEY THE 14.99 CFS CALCULATED MAX. SHEET FLOW.

THE WEIR STRUCTURE (DRIVEWAY) PARAMETERS:
Max. Sheet Flow (Q) = 14.99 CFS
Length (L) = 27'
C = Weir Coefficient = 3.33

Q = (C) x (L) x (H) $^1.50$ 14.99 = (3.33) x (27') x (H) $^1.50$ SOLVING FOR H: H = 0.30'

Head loss (H) = ?

MAXIMUM PONDING OR SHEET FLOW ELEVATION:
HIGH POINT OF DRIVEWAY (120.20') + H (0.30')
120.20' + 0.30' = 120.50'
SLAB ELEV. 122.60' WHICH IS 2.10' HIGHER THAN PONDING ELEV.

FL(S)36"=113.5

(RE: KEYED PLAN NOTE ON THIS SHEET)

(9.5' BOTTOM WIDTH, 10' TOP WIDTH, 0.5' DEPTH)

PROPOSED CONCRETE EXTREME

EXISTING SWALE TO BE FILLED

EVENT OVER-FLOW SWALE

Storm Sewer Calculation Form (1.69 AC ADJOCIENT TO DEVELOPMENT) PROJECT: KATY CREEK RANCH PLAZA DESIGN STORM $I = b/(d+TC)^e$ SYSTEM: 2 YEAR CURVE 100 YEAR CURVE $Tc = 10xA^{(0.1761)} + 15$ b= 75.01 b= 125.4 C = 0.60 la + 0.20 CHECKED BY: d= 16.2 d= 21.8 $Q = C \times I \times A$ e= 0.8315 e= 0.75 2- YEAR 100-YEAR AREA TOTAL RUNOFF SUM OF TC INTENSITY SUM OF INTENSITY SUM OF REACH DIAM. Slope Manning's (MIN.) I FLOWS I FLOWS LENGTH OR RISE (ACRES) C C*A (IN/HR) (CFS) (IN/HR) (CFS) (FT) (IN) % "n"

PROPOSED CONCRETE EXTREME EVENT OVER-FLOW SWALE CALCULATION

OFF-SITE EXTREME EVENT SHEET FLOW ANALYSIS:

PER SHEET 5 OF 21 OF APPROVED HARRIS COUNTY PLANS TITLED: "7.8 ACRE COMMERCIAL TRACT" (HC PROJECT # 51992)
THE EXTREME EVENT SHEET FLOW SWALE IS DESIGNED TO CARRY 21.0 CFS. PER CALCULATION TABLE ON THIS SHEET, THE
100-YR EXTREME EVENT FLOW OF 1.69 AC DISTURBED AREA ADJACENT TO THE DEVELOPMENT IS CONSIDERED AS FULLY
DEVELOPED AREA AND THE SUM OF FLOW IS 13.45 CFS. TOTAL REQUIRED EXTREME EVENT FLOW IS 21.0 + 13.45 = 34.45
CFS.

PROPOSED CONCRETE SWALE FLOW CALCULATIONS (AT SECTION B-B) (1' BOTTOM WIDTH, 3' TOP WIDTH, 2' DEPTH)

(1' BOTTOM WIDTH, 3' TOP WIDTH, 2' DEPTH)

- $Q=1.49/n*A*(A/P)^{2}$
- n=0.013 (CONCRETE CHANNEL) A=(1+3)*2/2=4
- $P=1+2*5^{(\frac{1}{2})}=5.4721$ S=0.011
- Q=1.49/0.013*4*(4/5.4721) $^{\circ}$ (3)*0.011 $^{\circ}$ (1) =39.0 CFS > 34.45 CFS (REQUIRED)
- PROPOSED CONCRETE SWALE FLOW CALCULATIONS (AT SECTION A-A) (9.5' BOTTOM WIDTH, 10' TOP WIDTH, 0.5' DEPTH)

Q=1.49/0.013*4.875*(4.875/10.618) $^{\circ}$ (3)*0.011 $^{\circ}$ (1) = 34.88 CFS > 34.45 CFS (REQUIRED) V=Q/A=34.45/4.875=7.06 FT/S

SO THE CONCRETE EXTREME EVENT OVER-FLOW SWALE (IN BOTH CONFIGURATION) WILL HAVE ENOUGH CAPACITY TO CARRY 100-YR EVENT FLOW FROM THE FURTHEST SITE TO THE R.O.W.

THE CONCRETE EXTREME EVENT OVER-FLOW SWALE HAS BEEN RE-SHAPED TO BE 9.5' WIDE AT BOTTOM AND 0.5' HEIGHT © EXTREME EVENT OVER-FLOW SWALE PER PLANS.

AROUND 40' FROM NORTH PROPERTY LINE AND EXTEND TO THE R.O.W. HENCE THE DESIGN FLOW RATE HAS BEEN INCREASE

AND FLOW VELOCITY HAS BEEN REDUCED. PLEASE REFER TO CROSS-SECTIONS ON THIS SHEET.

KEYED PLAN NOTES:

1. CONTRACTOR SHALL FILL EXISTING EXTREME EVENT SHEET FLOW SWALE AND REROUTE THE NEW CONCRETE EXTREME EVENT OVER-FLOW SWALE PER PLANS.

SCALE: 1" = 60'

KATY CREEK RANCH DRIVE (VARYING R.O.W.)

2. CONTRACTOR TO ENSURE NO DAMAGE AND NO IMPACT ON THE STABILITY OF THE ADJACENT PROPERTY OWNER'S FENCES.

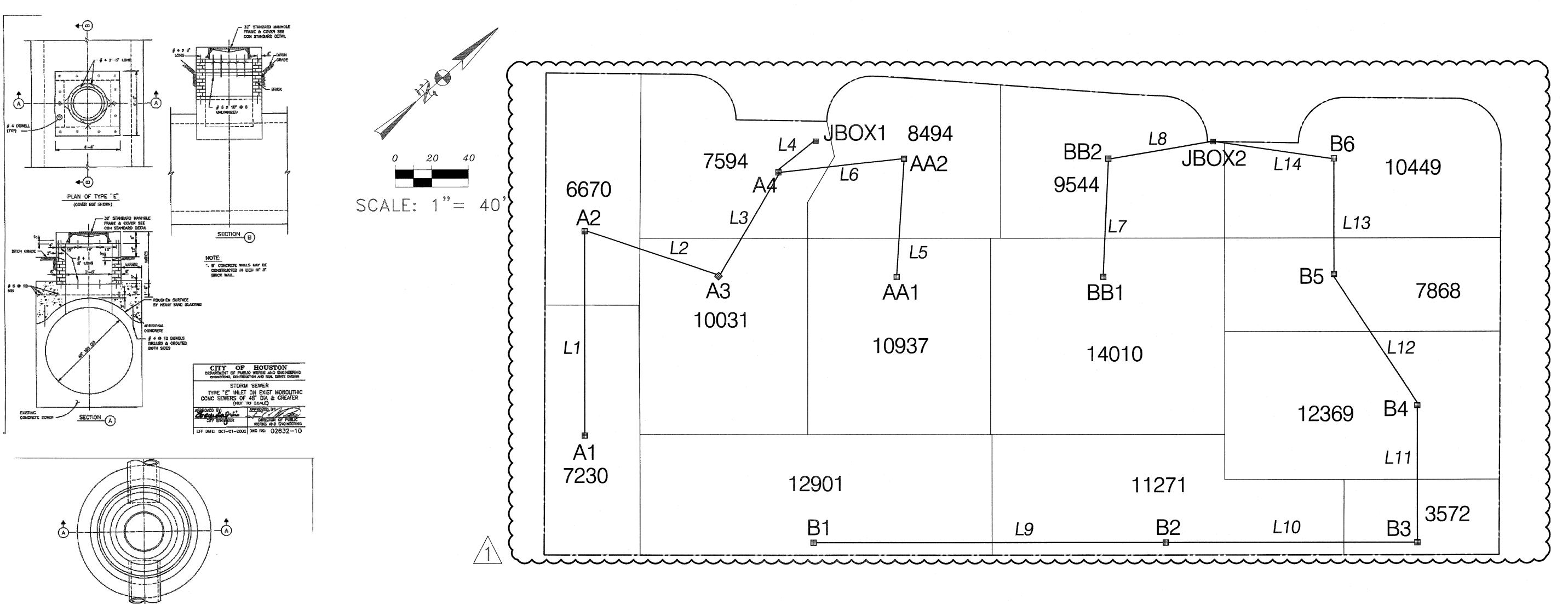
35' SAN. SWR., STM. SWR. & DRAINAGE ESMT. F.B.C.C.F. NO. 2014021698

7.83 AC.

KATY CREEK RANCH PLAZA" 5031 & 25033 Westheimer Parkway Katy, Texas 77494

FES and Associates, LLC
Civil, Traffic Engineering, and Consulting
Rhone: (713) 466-9776
E-mail: hrsassociates@aol.com
FIRM NAME: HRS and Associates, LLC

EXTREME EVENT FLOW ANALYSIS


SCALE: 1"= 60' PROJ. # 2015-07-06

SHEET 2 OF 6A

C-2A

/

/

E WALL TO 8 OF JANK 13

PVC WYE (WYE WITH REDUCEING BRANCH IF MAIN IS OVER 4") -----

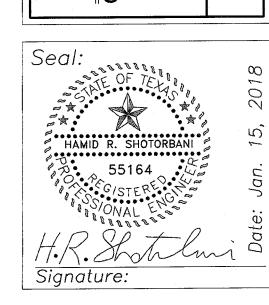
IN-LINE CLEANOUT

SECTION (A)

PVC WYE (WYE WITH REDUCEING BRANCH IF MAIN IS OVER 4")

CLEANOUT DETAIL

DRAINAGE AREA MAP

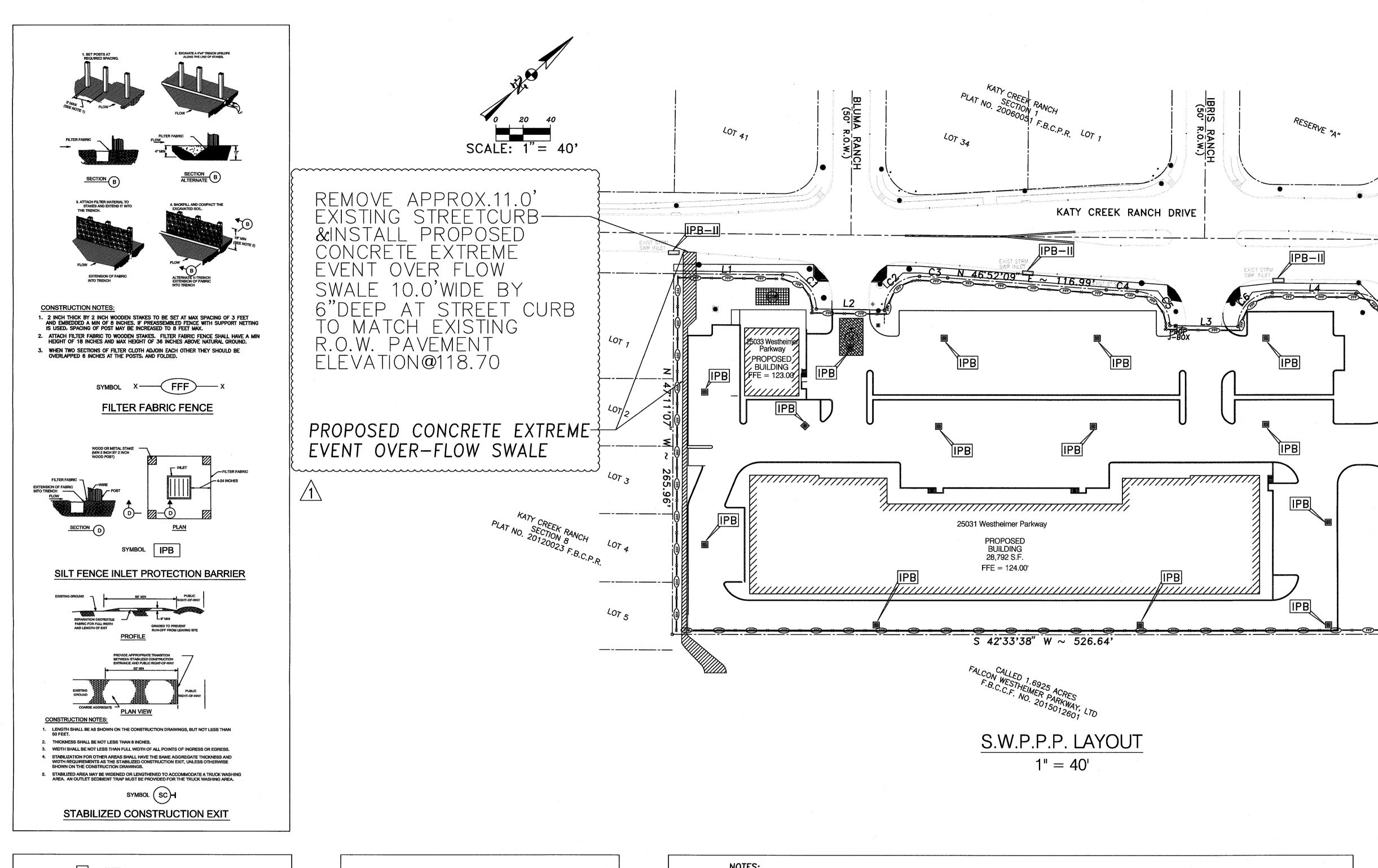

Storm Se	ewer Ca	alculati	on Form							·									:		·		1	
		1223-1																						
PROJEC		KAIY	CREEK	RANC	H PLAZ	А	Parlamenta de la constanta del con	DESIGN	etadm				l = b/(d+	TC\/\o		e de la companya de l	FL=Flov	vlina		· · · · · · · · · · · · · · · · · · ·	R=Top (of Rim		
SYSTEM	<u> </u>						Taryona a la	2 YEAR (100 YFA	R CURVE		Tc = 10x		1) + 15	ļ	· · · · · · · · · · · · · · · · · · ·		Gradier	it.	TG=Top		te	
BY:			HR					b =	75.01	b=	125.4		C = 0.60		· · · · · · · · · · · · · · · · · · ·		UP=Ups		7		DS=Dov	<u></u>		
CHECKE	ED BY:		HR				er pro-cipie	d=	16.2	d=	21.8		Q = C x	хА			G=Gutt) [[W.S.E.	=Water	Surface	e Ele
								e=	0.8315	e=	0.75									·				
		3.3						2- YE	EAR .	100-	YEAR													
LINE	INLET	INLET	AREA	TOTAL	RUNOFF	SUM OF	тс	INTENSITY	SUM OF	INTENSITY	SUM OF	REACH	DIAM.	Slope	Manning's	Design	Design	Fall	FL.	5 L.	Actual	TG	TG	100
	FROM	то	(ACRES)	AREA	COEFF.		(MIN.)	1	FLOWS	Total Reliance	FLOWS	LENGTH	OR RISE	-		Capacity	Velocity		Elev.	Elev.	Velocity			W.S
				(ACRES)	C	C*A	To have been a second or the second of the s	(IN/HR)	(CFS)	(IN/HR)	(CFS)	(FT)	(IN)	%	" n "	(CFS)	(ft/s)	(FT)	UP	DS	(ft/s)	UP	DS	ÚF
							a a a a a a a a a a a a a a a a a a a												(FT)	(FT)				
1111	A1	A2	0.17	0.117	0.90	0.15	10.00	5.38	0.80	7.33	1.09	110	8	0.55	0.011	1.07	3.06	0.61	118.76	118.15	2.30	122.00	122.25	120
L2	A2	A3	0.15	0.32	0.90	0.29	10.00	5.38	1.55	7.34	2.11	77	10	0.44	0.011	1.67	3.06	0.34	118.15	117.81	2.83		121.50	
L3	A3	A4	0.23	0.55	0.90	0.49	10.00	5.38	2.66	7.28	3.60	64	15	0.34	0.011	3.76	3:06	0.22	117.81	117.60		1		
											 													
L4	A4	JB1	0.17	1.17	0.90	1.05	10.00	5.38	5.30	7.32	7.71	32	18	0.30	0.011	5.41	3.06	0.10	117.60	117.50		120.00		118
L5	AA1	AA2	0.25	0.25	0.90	0.23	10.00	5.38	1.22	7.26	1.64	65	10	0.44	0.011	1.67	3.06	0.29	118.12	117.83	2.23		120.50	
L6	AA2	A4	0.19	0.45	0.90	0.40	10.00	5.38	2.16	7.30	2.93	70	15	0.34	0.011	3.76	3.06	0.24	117.83	117.60	1,76	120.50	120.00	118
17	BB1	BB2	0.32	0.32	0.90	0.29	10.00	5.38	1.56	7.22	2.09	65	10	0.44	0.011	1.67	3.06	0.29	117.19	116.90	2.86	122.00	120.50	118
L8	BB2	JB2	0.22	0.54	0.90	0.49	10.00	5.38	2.62	7.28	3,54	59	15	0,34	0.011	3.76	3.06	0.20	116.90	116.70	2.13	120.50	^ ***	118
L9	81	B2	0.30	0,30	0.90	0.27	10.00	5.38	1.43	7.23	1.93	191	10	0.44	0.011	1.67	3.06	0.84	118.86	118.02	2.63	122.25	122.25	120
L10	B2	В3	0.26	0.55	0.90	0.50	10.00	5.38	2.69	7.26	3.62	136	15	0.34	0.011	3.76	3.06	0.46	118.02	117.55	2.19	122.25	122.25	119
<u> </u>	B 8	5 4	0.08	0.64	0.90	0.57	10.00	5.38	3.08	7.44	4.26	777	15	0.34	0.011	3.76	3.06	0.26	117.55	117.29	2,51	122.25	122.00	118
L12	B4	B5	0.28	0.92	0.90	0.83	10.00	5.38	4.46	7.24	6.00	87	18	0.30	0.011	5.41	3.06	0.26	117.29	117.03	2.52	122.00	121.75	119
L13	B 5	В6	0.18	1.10	0.90	0.99	10.00	5.38	5.33	7.32	7.25	65	24	0.25	0.011	9.61	3.06	0.16	117.03	116.87	1.70	121.75	120.00	119
L14	B6	JB2	0.24	1.34	0.90	1.21	10.00	5.38	6.49	7.27	8.78	67	24	0.25	0.011	9.61	3.06		116.87			120.00		118

CREEK RANCH PLAZA"

25033 Westheimer Parkway
Katy, Texas 77494

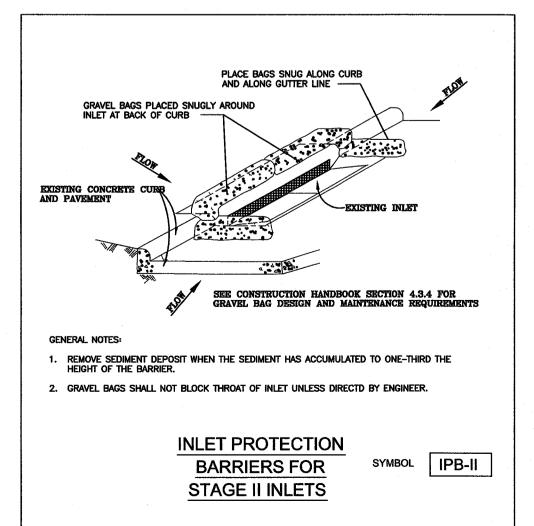
and Associates, LLC fic Engineering, and Consulting 8318 Ivan Reid Drive Houston, Texas 328-7121 Texas 77040-1509 sassociates@aol.com

PROPOSED RETAIL


DATE	12-12-17	01-12-17		,	
REVISION	FORT BEND COUNTY REVISION	REVISIONS OF MUD COMMENTS			
9	$\overline{\mathbb{Q}}$				0

DRAINAGE AREA MAP & DETAILS

SCALE: 1"= 30' PROJ. # 2015-07-06


SHEET 3 OF 6

CHS 2/13/18

CONCRETE TRUCK WASH

NOTES:

PAVING CONTRACTOR SHALL HYDROMULCH ALL R.O.W.'S AND EASEMENTS AND BROADCAST SEED ALL LOT AREAS AS SOON AS MAJOR GRADING OPERATIONS HAVE BEEN COMPLETED, OR AS DIRECTED BY THE ENGINEER.

PROTEC ALL STAGE 1 AND STAGE 2 INLETS WITH INLET PROTECTION BARRIERS.

APPROXIMATE SLOPE AFTER MAJOR GRADING ACTIVITIES WILL BE 1.0 % PER LOT GRADING PLAN.

CONTRACTOR SHALL CONSTRUCT P.P.P. PER "STORM WATER MANAGEMENT HANDBOOK FOR CONSTRUCTION ACTIVITIES" AS PREPARED BY HARRIS COUNTY, HARRIS COUNTY FLOOD DISTRICT AND THE CITY OF HOUSTON, DATED SEPTEMBER 17, 1992 AND ANY ADDENDA THERETO.

CONTRACTOR IS RESPONSIBLE FOR PROVIDING PROPER POLLUTION CONTROL MEASURES FOR ANY ON-SITE WASH DOWN LOCATIONS.

CONTRACTOR VEHICLES WILL AVOID TRACKING SOIL OR MATERIAL ON TO EXISTING OR

CONTRACTOR IS RESPONSIBLE FOR PERIODICALLY SWEEPING NEW AND EXISTING PAVED SURFACES TO MINIMIZE MATERIALS ENTERING THE STORM SEWER SYSTEM.

UNTIL INLETS ARE CONSTRUCTED, DISCHARGE RUNOFF INTO EXISTING PAVED SURFACES TO MINIMIZE MATERIALS ENTERING THE STORM SEWER SYSTEM.

PAVING CONTRACTOR SHALL HYDROMULCH ALL PAVED AREAS AS SOON AS MAJOR GRADING OPERATIONS HAVE BEEN COMPLETE, OR AS DIRECTED BY THE ENGINEER.

10. CONTRACTOR SHALL BE RESPONSIBLE FOR SUBMITTING "NOTICE OF INTENT" (N.O.I.) AND "NOTICE OF TERMINATION" (N.O.T.). THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING DAILY REPORTS AND INSPECTING AS REQUIRED BY "STORM WATER MANAGEMENT HANDBOOK FOR CONSTRUCTION ACTIVITIES", LATEST EDITION AS PREPARED BY HARRIS COUNTY, HARRIS COUNTY FLOOD CONTROL DISTRICT, AND THE CITY OF HOUSTON, DATED SEPTEMBER 17, 1992 AND ANY ADDENDA THERETO.

FENCE CONSTRUCTION NOTES:

1. 2 INCH THICK BY 2 INCH WOODEN STAKES TO BE SET AT MAX SPACING OF 3 FEET AND EMBEDDED A MIN OF 8 INCHES. IF PREASSEMBLED FENCE WITH SUPPORT NETTING IS USED, SPACING OF POST MAY BE INCREASED TO 8 FEET MAX.

2. ATTACH FILTER FABRIC TO WOODEN STAKES. FILTER FABRIC FENCE SHALL HAVE A MIN HEIGHT OF 18 INCHES AND MAX HEIGHT OF 36 NCHES ABOVE NATURAL GROUND.

3. WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN EACH OTHER THEY SHOULD BE OVERLAPPED 6 INCHES AT THE POSTS, AND FOLDED.

PROTECTION BARRIER CONSTRUCTION NOTES

SET 2 INCH BY 2 INCH WOODEN STAKES SPACED A MAX OF 6 FEET APART AND EMBEDDED A MIN OF 12 INCHES.

2. WOVEN WIRE FENCE TO BE FASTENED SECURELY TO FENCE POSTS

3. FILTER CLOTH TO BE FASTENED SECURELY TO WOVEN WIRE FENCE, WITH TIES SPACED EVERY 24 INCHES AT TOP AND MIDSECTION.

4. MINIMUM HEIGHT OF FILTER SHOULD BE 18 INCHES AND A MAXIMUM OF 36 INCHES ABOVE NATURAL GROUND.

5. WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN EACH OTHER THEY SHALL BE OVERLAPPED 6 INCHES AT THE POSTS, AND FOLDED.

STRAW BALES AROUND/ SILT FENCE

INLET PROTECTION BARRIER

×— FFF — × FILTER FABRIC FENCE

STABILIZED CONSTRUCTION EXIT

CONCRETE TRUCK WASH (10' X 20')

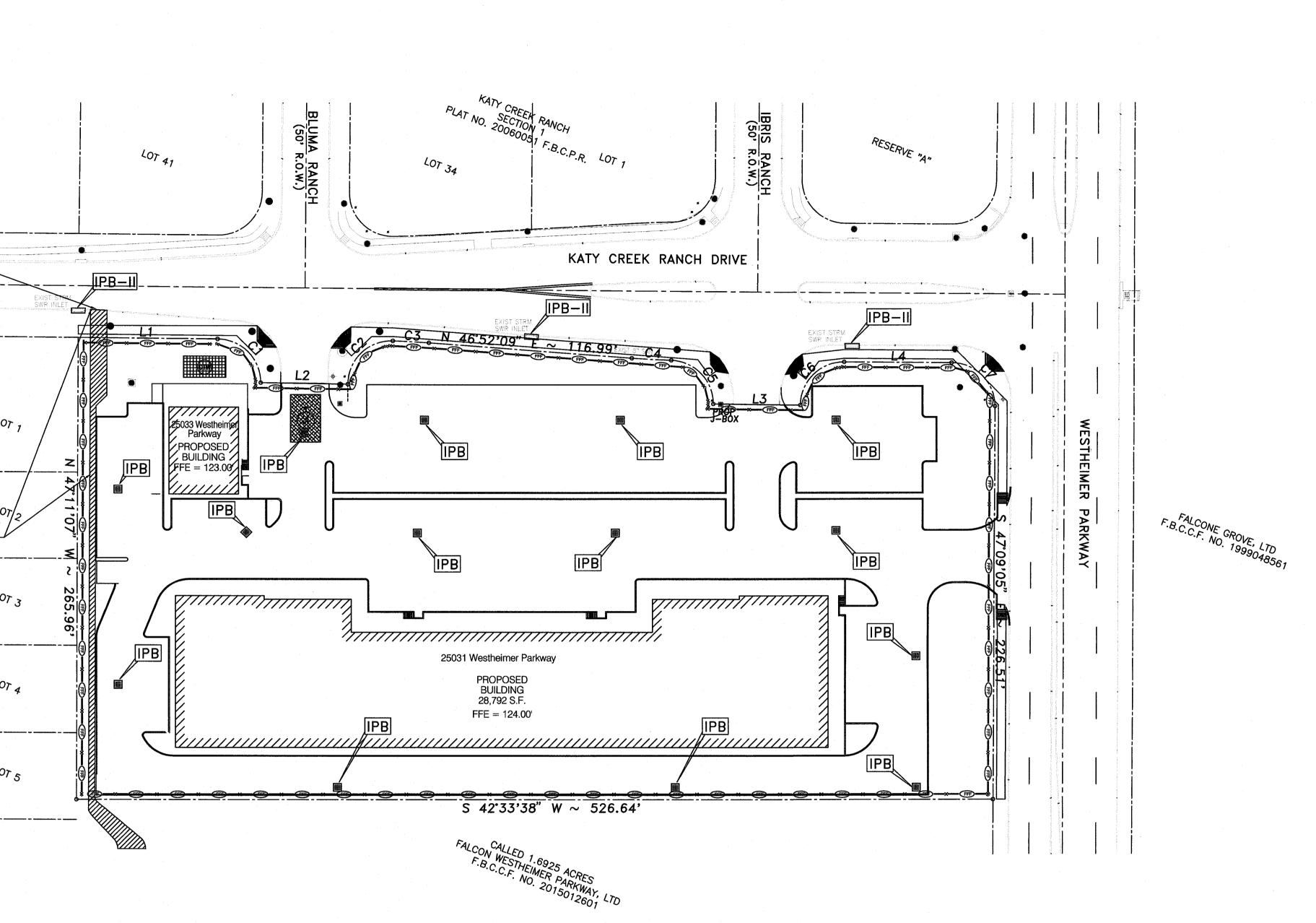
S.W.P.P.P. LAYOUT & DETAILS

AZA"

RANCH

CREEK

"KATY


and

DATE 12-12-17 01-12-18 02-14-18

25031

SCALE: 1"= 40' PROJ. # 2015-07-06

SHEET 4 OF 6

LEGENDS: INLET PROTECTION BARRIER WITH

FOR STAGE II INLETS

GENERAL NOTES FOR SITEWORK:

(THESE NOTES CONTROL EXCEPT AS NOTED OTHERWISE IN PLANS & DETAILS)

A. EXISTING UTILITIES, FACILITIES & TREES

- CONTRACTOR SHALL FIELD VERIFY LOCATION AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO CONSTRUCTION OF PROPOSED FACILITIES. NOTIFY ENGINEER IMMEDIATELY OF ANY DISCREPANCIES.
- 2. CONTRACTOR SHALL NOTIFY THE APPROPRIATE UTILITY COMPANY 48 HOURS PRIOR TO EXCAVATING NEAR THEIR UTILITY.
- CONTRACTOR SHALL TAKE ALL DUE PRECAUTIONS TO PROTECT EXISTING FACILITIES FROM DAMAGE. ANY DAMAGE TO EXISTING FACILITIES INCURRED AS A RESULT OF CONSTRUCTION OPERATIONS WILL BE REPAIRED BY THE CONTRACTOR AT HIS OWN EXPENSE
- CONTRACTOR SHALL TAKE EXTRA CARE TO PROTECT TREES IN AREAS ADJACENT TO CONSTRUCTION.

B. STORM SEWER SYSTEM

- 1. STORM SEWER SHALL BE CONSTRUCTED IN ACCORDANCE WITH CITY OF HOUSTON SPECIFICATION AS CURRENTLY AMENDED.
- STORM SEWER PIPE SHALL BE HDPE, U.N.O. ON PLANS.
- SET STORM SEWER MANHOLE RIMS TO MATCH FINISH GRADE.
- 4. STORM SEWER INLETS SHALL BE PARK EQUIPMENT CATCH BASINS
- 5. CONCRETE PIPE SHALL BE BEDDED WITH CEMENT STABILIZED SAND IN ACCORDANCE WITH CITY OF HOUSTON SPECIFICATIONS FOR CONCRETE
- 6. PVC PIPE SHALL BE BEDDED WITH A MINIMUM OF ONE FOOT OF CEMENT STABILIZED SAND. CEMENT STABILIZED SAND SHALL BE LAID IN 6" LIFTS COMPOSED TO 95% STD. PROCTOR MAX. DRY DENSITY (ASTM D698).
- EXISTING PAVEMENTS, CURBS, SIDEWALKS, AND DRIVEWAYS DAMAGED OR REMOVED DURING CONSTRUCTION SHALL BE REPLACED TO THE CITY OF HOUSTON STANDARDS.
- 8. CONDITION OF THE ROAD AND/OR RIGHT-OF-WAY, UPON COMPLETION OF JOB, SHALL BE AS GOOD AS OR BETTER THAN THE CONDITION PRIOR TO STARTING WORK.
- 9. ADEQUATE DRAINAGE SHALL BE MAINTAINED AT ALL TIMES DURING CONSTRUCTION AND ANY DRAINAGE DITCH OR STRUCTURE DISTURBED DURING CONSTRUCTION SHALL BE RESTORED TO THE SATISFACTION OF THE OWNING AUTHORITY.

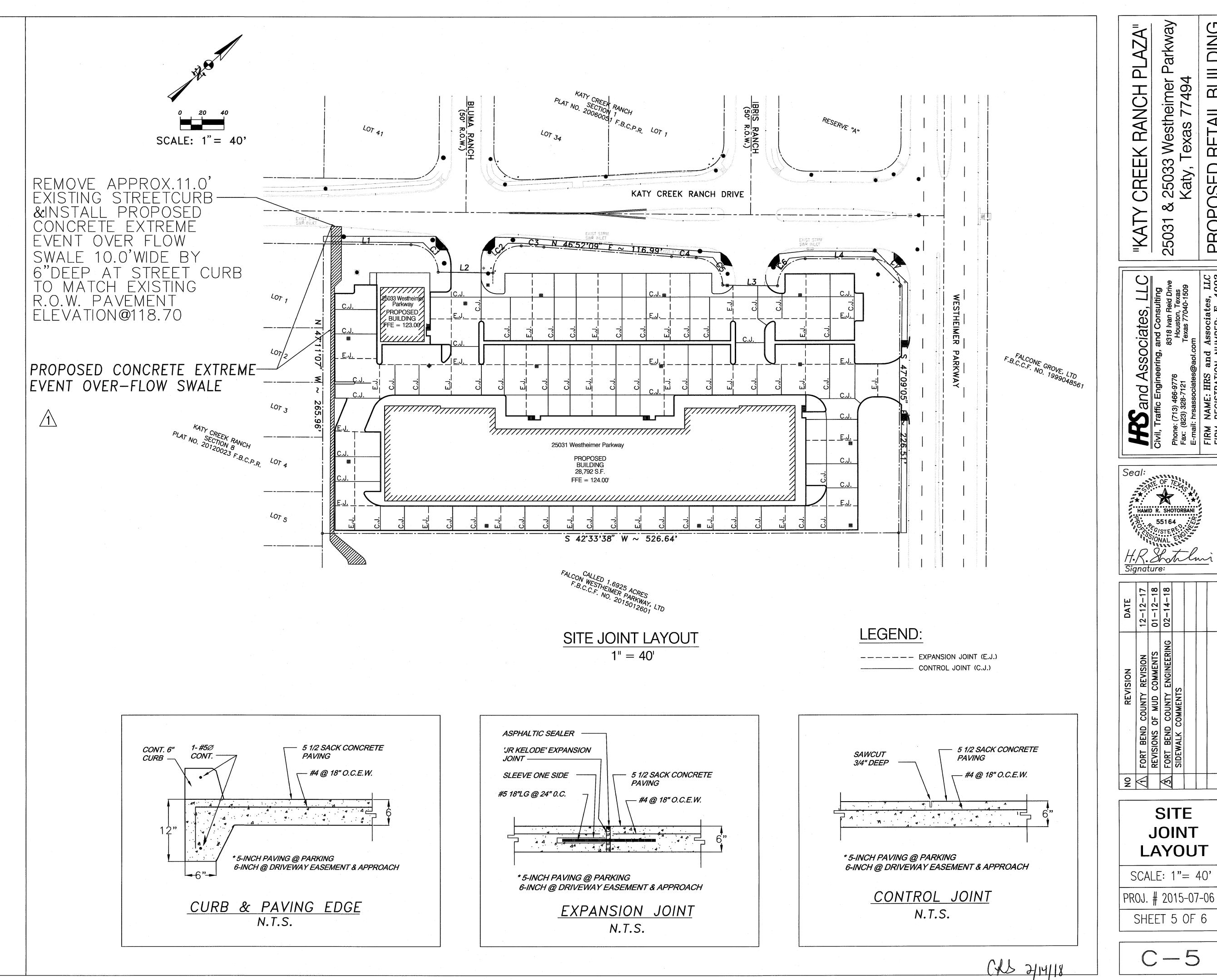
C. PAVING & GRADING

1. SUBGRADE PREPARATION:

-STRIP PAVEMENT AREAS TO REMOVE ALL TOP SOIL, DEBRIS AND VEGETATION. REMOVE TREE STUMPS AND ROOTS. -OVER-EXCAVATE SOFT AREAS AND REPLACE WITH SELECT FILL FREE OF ORGANIC MATTER, WITH PLASTICITY INDEX OF 7 TO 20 PLACED IN SIX(6) TO EIGHT(8) INCH LOOSE LIFTS AND COMPACTED TO 95% OF STD. PROCTOR (ASTM D698-78) MAX. DRY DENSITY. -PROOF-ROLL TO 95% OF STD. PROCTOR (ASTM D698-78) MAX. DRY DENSITY

-STABILIZE SUBGRADE WITH 6 PERCENT HYDRATED LIME BY DRY WEIGHT OR 27 POUNDS PER SQ.YARD PER 6 INCH TREATED DEPTH. -COMPACT TO 95% OF STD. PROCTOR (ASTM D698-78) MAX. DRY DENSITY.

2. PROVIDE 5" THICK CONCRETE PAVEMENT WITHIN PARKING AREAS.


- 3. CONCRETE COMPRESSIVE STRENGTH = 3,000 PSI @ 28 DAYS.
- 4. REINFORCEMENT: #4 @ 18" EA. WAY. ASTM A615 GRADE 60.
- 5. REINFORCEMENT SHALL BE SUPPORTED ON METAL OR PLASTIC CHAIRS, AT A MAXIMUM OF FOUR (4) FEET EACH WAY. 6. PROVIDE EXPANSION JOINTS @ A MAXIMUM SPACING OF TWENTY (20) FEET EACH WAY. FORM JOINTS WITH METAL KEY WAYS & PROVIDE 3/4"∅ SMOOTH DOWELS x 2'-0" @ 20" O.C., GREASE & WRAP ONE END.
- RECOMMENDED PAVEMENT SLOPE TO DRAIN = 0.50%, BUT IN NO INSTANCE LESS THAN 0.35% OR HIGHER THAN 8%.
- EXCESS SOIL MATERIAL IS THE RESPONSIBILITY OF THE CONTRACTOR & IS TO BE DISPOSED OFFSITE RESPONSIBLY AT NO SEPARATE PAY.

D. DOMESTIC WATER SYSTEM

- 1. WATER LINE SHALL BE PVC PIPE SCHEDULE 40.
- 2. WATER LINE SHALL BE CONSTRUCTED AND TESTED IN ACCORDANCE WITH CITY OF HOUSTON SPECIFICATION FOR WATER MAIN CONSTRUCTION AS CURRENTLY AMENDED.
- 3. WATER LINE SHALL HAVE BANK SAND BEDDING AND BACKFILL.
- PROVIDE THRUST BLOCKING ACCORDING TO CITY OF HOUSTON STANDARDS & SPECIFICATIONS.
- 5. PROVIDE A MINIMUM 6-INCHES OF CLEARANCE AT STORM SEWER AND WATER LINE CROSSING.

E. SANITARY SEWER SYSTEM

- PVC SANITARY SEWER PIPE SHALL BE SDR 26, AND SHALL HAVE BEDDING AND BACK FILL AS PER DETAIL THIS SHEET.
- SANITARY SEWER SHALL BE CONSTRUCTED IN ACCORDANCE WITH CITY OF HOUSTON SPECIFICATION AS CURRENTLY AMENDED.
- CONTRACTOR SHALL BE RESPONSIBLE FOR SAFELY SHORING ALL TRENCHES IN EXCESS OF 6'-0" IN DEPTH IN COMPLIANCE W/ OSHA.
- 4. INLINE CLEAN OUTS SHALL BE INSTALLED AT EVERY 90' FEET.
- 5. POLY-VINYL-CHLORIDE PSM (PVC) PIPE SHALL CONFIRM TO ASTM SPECIFICATIONS D3034 AND BE INSTALLED ACCORDING TO ASTM D2321.
- 6.) ALL SANITARY SEWER SERVICE LINES SHALL BE CONSTRUCTED TO TRUE ALIGNMENT AND GRADE.
- 7.) WATER-TIGHT ADAPTERS OF A TYPE COMPATIBLE WITH THE MATERIALS BEING JOINED WILL BE USED AT THE POINT OF CONNECTION OF THE SERVICE LINE TO THE BUILDING PLUMBING.
- 8.) EACH CLEANOUT WILL BE INSTALLED SO THAT IT OPENS IN A DIRECTION OPPOSITE TO THE FLOW OF THE WASTE AND, EXCEPT IN THE CASE OF "WYE" BRANCH AND END-OF-THE-LINE CLEANOUTS.
- 9.) CLEANOUT WILL BE MADE WITH AIRTIGHT MECHANICAL PLUG.

 \triangleleft

RANCH

另

CRE

"KATY

p

7 8 8

12 01 02

SITE

JOINT

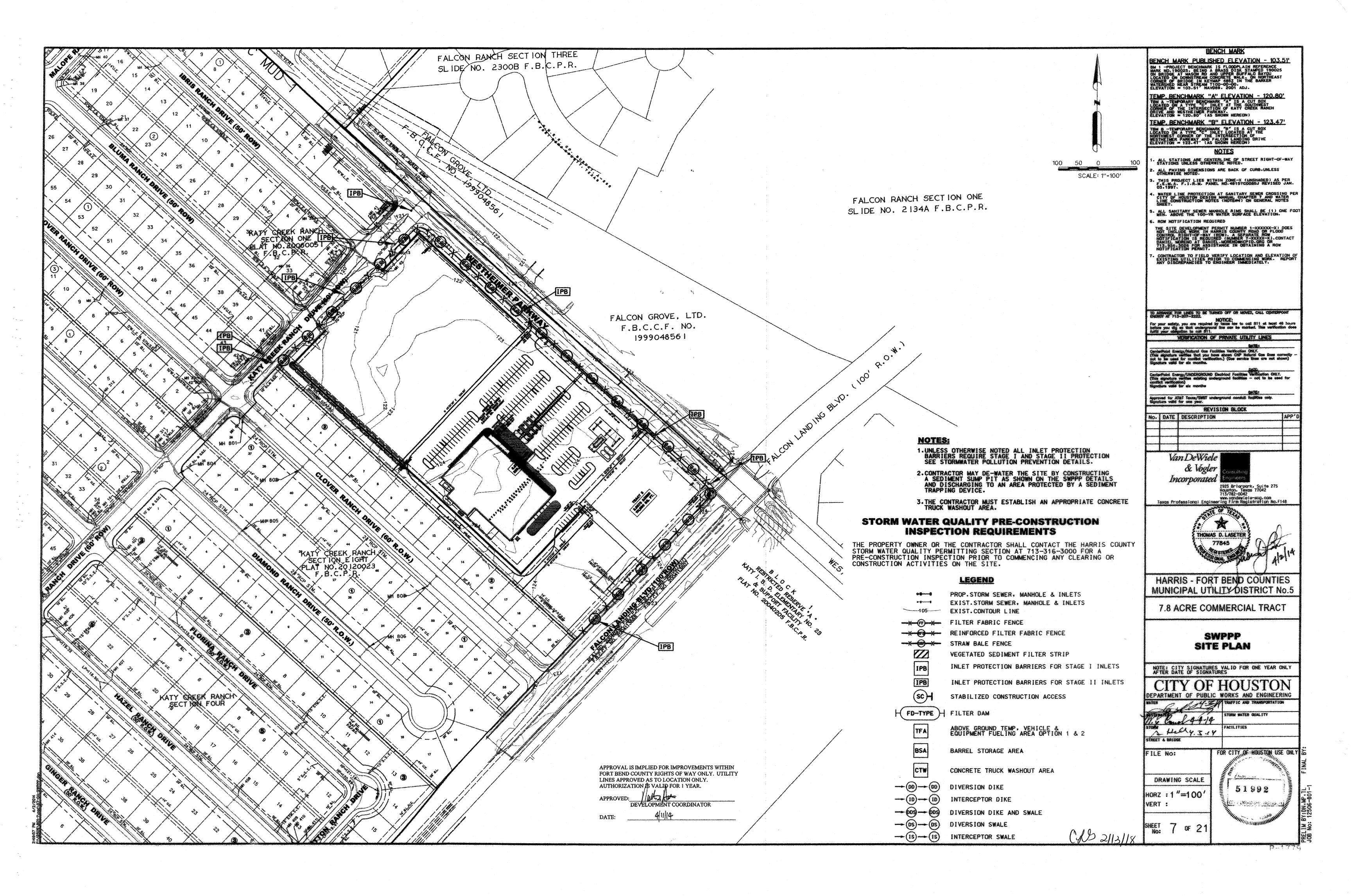
LAYOUT

SCALE: 1"= 40'

SHEET 5 OF 6

C-5

 ∞


503

 \square

Ш

S

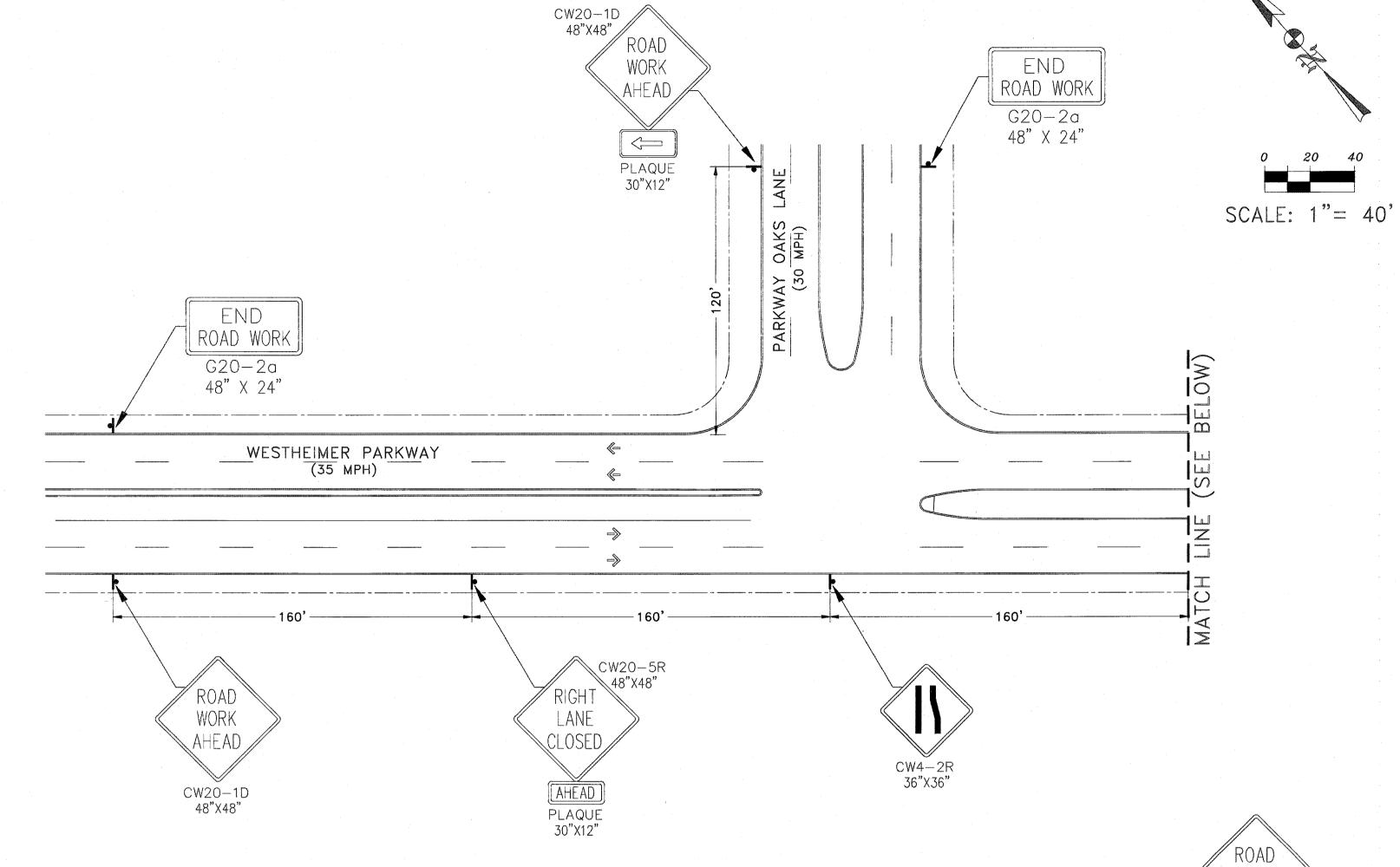
PA

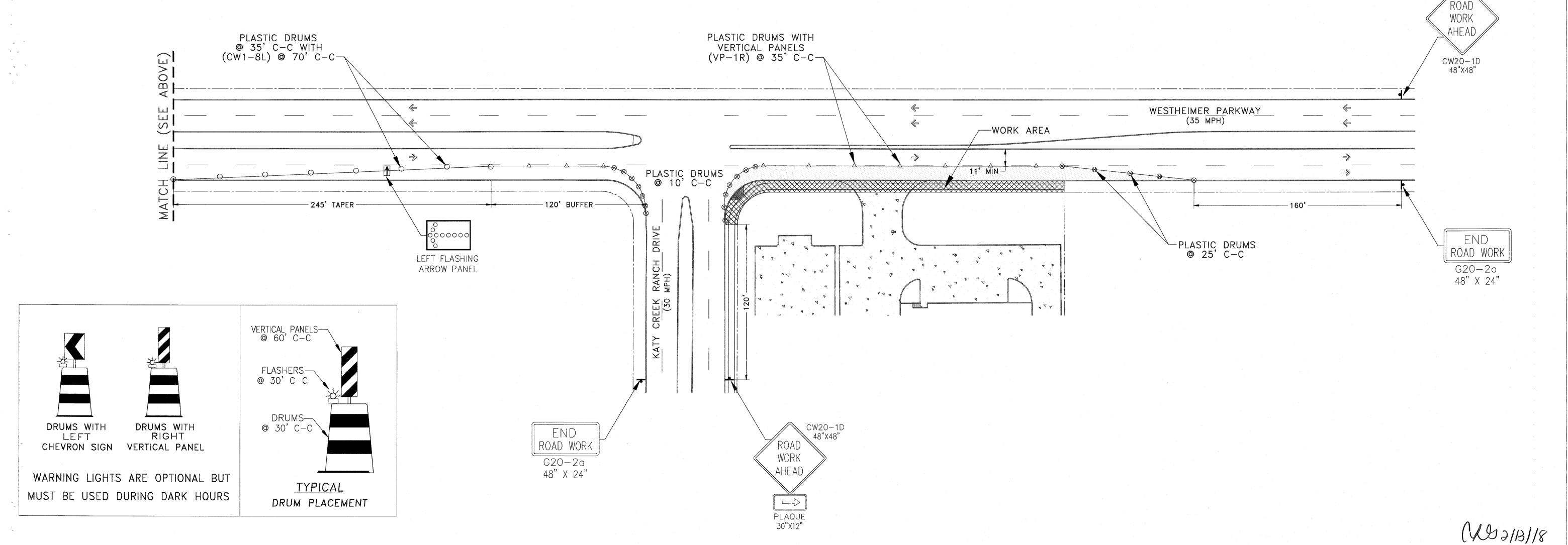
RIGHT LANE CLOSURE ON MAJOR STREET

SPEED LIMIT = 35 MPH

TRAFFIC NOTES

- 1 CONTRACTOR SHALL PROVIDE AND INSTALL TRAFFIC CONTROL DEVICES IN CONFORMANCE WITH PART VI OF THE TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (TEXAS M.U.T.C.D., MOST RECENT EDITION WITH REVISIONS) DURING CONSTRUCTION.
- 2 NO LANES SHALL BE CLOSED DURING THE HOURS OF 7:00 AM TO 9:00 AM AND 4:00 PM TO 6:00 PM MONDAY THRU FRIDAY.
- 3 CONTRACTOR SHALL COVER OPEN EXCAVATIONS WITH STEEL PLATES ANCHORED PROPERLY DURING NON-WORKING HOUR AND OPEN LANES FOR NORMAL TRAFFIC FLOW.
- 4 IF THE CONTRACTOR CHOOSES TO USE A DIFFERENT METHOD OF "TRAFFIC CONTROL PLANS" DURING THE CONSTRUCTION THAN WHAT IS OUTLINED IN THE CONTRACT DRAWINGS, HE/SHE SHALL BE RESPONSIBLE TO PREPARE AND SUBMIT AN ALTERNATIVE SET REPRODUCIBLE MYLARS, SEALED AND SIGNED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF TEXAS, WITH THE ENTIRE APPROVED SET OF DRAWINGS, TO PLAN REVIEW SECTION FOR REVIEW AND APPROVAL, TEN WORKING DAYS PRIOR TO IMPLEMENTATION.
- 5 APPROVED COPIES OF THE TRAFFIC CONTROL PLANS AND LANE CLOSURE PERMITS SHALL BE AVAILABLE FOR INSPECTION AT JOB SITE AT ALL TIMES.
- 6 ALL TRAFFIC CONTROL DEVICES USED AT NIGHT SHALL BE REFLEC-TORIZED OR ILLUMINATED.
- 7 CONTRACTOR SHALL MAINTAIN LOCAL DRIVEWAY ACCESS TO RESIDENTIAL AND COMMERCIAL PROPERTIES ADJACENT TO WORK AREA AT ALL TIMES.


SPACING FOR CHANNELIZING DEVICES


- A PLASTIC DRUMS ON MERGING TAPER AT 50' C-C WITH CHEVRON SIGNS AT 70' C-C AND TYPE "C" WARNING LIGHT (FOR OVERNIGHT CLOSURE).
- B PLASTIC DRUMS ON DOWNSTREAM TAPER AT 35' C-C.
- C PLASTIC DRUMS ON RADII AT 10' C-C.
- D PLASTIC DRUMS ON TANGENT @ 35' C-C WITH VERTICAL PANEL AT 70' C-C AND TYPE "C" WARNING LIGHT (FOR OVERNIGHT CLOSURE).
- E PLASTIC DRUMS IN FRONT OF CONSTRUCTION ZONE AT 20' C-C WITH VERTICAL PANEL AT 40' C-C AND TYPE "A" WARNING LIGHT (FOR OVERNIGHT CLOSURE).
- G CONCRETE TRAFFIC BARRIER (C.T.B.) OR LOW PROFILE CONCRETE TRAFFIC BARRIER (L.P.C.T.B.) WITH REFLECTORS AT 10' C-C, IF PAVEMENT DROP IS MORE THAN TWELVE INCHES (12").

NOTES:

SPACINGS SHOWN ON TRAFFIC CONTROL PLANS SHALL SUPERSEDE THE ABOVE SPACINGS.

SPACINGS MAY BE ADJUSTED TO MISS DRIVEWAYS AND/OR MEDIAN OPENINGS.

K RANCH PLAZA"
Westheimer Parkway
Texas 77494
RETAIL BUILDING

"KATY CREEK RANCH F 25031 & 25033 Westheimer I Katy, Texas 77494

8318 Ivan Reid Drive
3) 466-9776
Houston, Texas
328-7121
Texas 77040-1509
sassociates@aol.com

AME: HRS and Associates, LLC

PROPOSED

HAMID R. SHOTORBANI

Solventia State

Fig. 15 - 164

Fig. 164

Fig

TRAFFIC CONTROL PLAN

SCALE: 1"= 40'

PROJ. # 2015-07-06 SHEET 6A OF 6

C7-TCP